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ASYMPTOTIC THEORY FOR SIEVE ESTIMATORS IN
SEMIMARTINGALE REGRESSION MODELS

by

Ian. W. McKeague

1*.

ABSTRACT , A

/

/This paper studies the estimation of functions .... describing the

temporal influence of p covariate processes in a regression model for semi-

martingales. McKeague (1986) introduced sieve estimators for . .. , sand

2
established consistency in L-norm. In the presetet paper the asymptotic dis-

tribution theory for the integrated sieve estimators is developed. Smoothed

sieve estimators are shown to be pointwise consistent and rates of convergence

are provided.

:N-

*. . . . . . . . . .. . . . . .

*.x-



1. Introduction

This work is a sequel to McKeague (1986) in which statistical estimation for

a nonparametric regression model for semimartingales was introduced. The model

is given by

X(t)=X(O) +fA(s)ds+M(t), t [0,l (1.1)

where M is a square integrable martingale and

X(s) =Ep : lj (s)Y (S) (1.2)

Here al. ..., ap are deterministic functions of time and Y1,.', Y are predictable

P p

covariate processes. Grenander's method of sieves was used to obtain estimators,

denoted &n), of a j, j= 1 ..., p based on n replicates of X and its covariates.

2These estimators were shown to be consistent in L -norm as n-c.

Our aim in this paper is to obtain some results on the asymptotic distirbutions

and rates of convergence of the sieve estimators. As in density estimation a

satisfactory distribution theory is possible only for the integrated estimator

given by

(n)(t) ft&(n) (s)ds, (1.3)

where 1- j p. Also, to obtain rate of convergence results we need to look at a

smoothed sieve estimator

a n (t) = 1 K L s) (n)(s)ds, (1.4)
n n

e. 7
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where K is a function with integral 1, called the kernel function, and b >0n

is a bandwidth parameter. Our results make it possible to test hypotheses

concerning a, ..... a and to construct confidence bands for

A (t) = tfoj (s)ds, j=l, .... p. (1.5)

The model (1.1) contains a number of important special cases. Grenander

(1981), Ibragimov and Khasminskii (1981) and Geman and Hwang (1982) have studied

the case where p= , Y1 1 1 and M is a Wiener process. Nguyen and Pham (1982)

have treated the linear diffusion process with p = 1. Aalen (1980) has studied

the point process case for general p !I. Aalen provided estimators of A1, ... A
p

but it has not been possible to obtain consistency or asymptotic distribution

results for these estimators except when p = 1. The importance of the point process

version of (1.1) is that it provides an alternative to the regression model of

Cox (1972) for the analysis of censored survival data. A practical example might

arise in which X(t) is the hazard rate for the incidence of cancer in a subject

who has been exposed to p carcinogens, where Y.(t) is the cumulative exposure to

the jth carcinogen and aj(t) represents the relative hazard rate of the jth car-

cinogen at age t.

Our asymptotic distribution results are given in section 2. in section 3

we state results on the rate of convergence of the smoothed sieve estimators.

All proof are contained in section 4.

. . . . .

- * . °
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2. Asymptotic distributions.

.1"

Let (X., M., Y.j, j =, ... , p), i= ... , n, denote n independent copies

of the generic processes X, M and Y., j=l ... , p which satisfy the model (1.1).
J

For each j = 1, ..., p let (r r> i) be a complete orthonormal sequence in
jr

L2 [O,1]. The sieve estimator &(n) for a., which was introduced by McKeague
J J

(1986), is defined as follows. Let

d
n

(n) (t)= Z a.nq. (t), (2.1)
r=l jr jr

where (dn) is an increasing sequence of positive integers and &(n) is the jr
n jr

element in the pxdn matrix &(n) defined by

c((n) _ (n) -1 (n))

vec(. n
) = A vec(Bn). (2.2)

Here vec is an operator which takes a matrix and places the elements in lexico-

graphical order to form a long column vector, B (n) is a pxdn matrix given by

(n)1 nB =-- n fOPjr(tl gij (t)dXi(t),
Jr n 1 jr i

()2 (n)

ad(n) is a pd n x pdn matrix partitioned into p submatrices "jk of order

d ×d with
n n

) n
Anik- n E 1 ir t)Dke(t)Yi j(t)Y iktdt .

In equation (2.2), A n ) is a generalized inverse of Afn) whose choice does

not affect the asymptotic behavior of a.

* - . .



Define measures P~. j= 1, ,p by dp (t) =EY 2(t)dt. The projections of6

a. onto span 0 r =1, ... , d Iin L 2(FO, 13, du and L 2([0, li, dt) are
jr n

denoted Y..(n) and {n1 respect ive ly.

(n) (n)(nl
Write A ~(t) ft sdA. (t) s1 Js. A function f is said to be

Lipschitz of order -y, where 0 <y! 1, if there is a constant C such that for all

s, t in the domain of f, I f (t) - f (s) 1 !5C It - s I Y'. Tf f is Lipschitz of order

1 we simply say it is Lipschitz. The predictable quadratic variation of M is

denoted <M1 >

The following assumptions were used in McKeague (1986) to obtain consistency

of &(n in L2-norm.

(Al) loaj(t)dt <- for j =1, ... ,p.

4
(A2) sup EY.(t) <- for j = I , p.

2
(A3) inf EY.(t) >0 for j 1, .. ,P.

(A4) sup FY t)ktI
t61-0,11 EY (t)PE2t

for all I j < k 5p, applicable for p 2.

(~A5) The function

Y- E[f (s) d N1 >, t E U1

is Lipschitz, for i 1, 1...p.

Additional assumptions needed for our various weak convergence results are

ft. ~ no stated. ~. . . . . ~ . --- '-



(Si1) df act (t) 0- {n) (t)]2 dt 0, asn

{n} 2
(S2) -f1 a )a. (t)]I dt - 0, as n oo.

0s up IEY.(t)Ykt Il

(BI) tEEO,liI

ELO in Y()- inf EY k (t)]~
tEE0,11tECO,l]

for all 1l1j <k <p, applicable for p -a2.

(B2) <zNl> is absolutely continuous and

4 d<M> 2
sup E[Y.(t)(d for j=l, .. ,p.

tE[o,1]

*Our first result deals with weak convergence of finite dimensional distributions.

*Theorem 2.1. Suppose that (Al)-(A5), (Si) hold and d~ ~ d 0(n2) Thenn n

for h.E L LbO,l], j=1, ... ,P

'h t), n(t)C((n) ()d p= D V O

where = (a )is the pxp matrix defined by
jk

H =(Hl,.. H y, h (hi, P.,h)

H~)=L~~~t, ~) Yt 1(p4

. .
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K(t) is the pxp matrix with components

Kjk (t) = j(t)Yk(t)]. (2.5)

Corollary 2.2. Under the conditions of Theorem 2.1

( n ) - A(n )  f

S i J i,

where D denotes convergence of finite dimensional distributions and m. is a
f .3

continuous Gaussian martingale with m.(0)= 0,

Cov (s), m.(t)) =Efo ( (u)d<M> (2.6)

Corollary 2.3. Under the conditions of Theorem 2.1 but with (A4) replaced by

the stronger condition (Bl)

(n A. f-*i.
A3 n}

Corollary 2.4. Under the conditions of Theorem 2.1 but with (Sl) replaced by

the stronger condtion (32)

'- ( "(.n "  .) f m.

in...

If X is assumed to be a continuous process (equivalently the martingale M is

continuous) then it is possible to strengthen these results to weak convergence

in the function space C[0,1].
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Theorem 2.5. Suppose that (Al)-(A4), (SI) and (B2) hold, d n , d =o(n 2 )n n

and M is a continuous martingale. Then

(n A(n)) M. in in C'_O,I.¢ j J 3

Corollary 2.6. Under the conditions of Theorem 2.S but with (A4) replaced by

the stronger condition (B2)

(n) {n} D
- A -- ---- M. in C[OJI].

n

Corollary 2.7. Under the conditions of Theorem 2.5 but with (S1) replaced by

the stronger condition (S2)

/(nA) () m. in C[0,1].
3 3%

Under appropriate smoothness conditions on a. condition (SI) or (S2) can be

satisfied by a careful choice of the sieve and (dn). We mention two important

sieves for which this is possible.

(1) The Fourier sieve. Take Jjr =r' i = . p where el(t) -l and for r_2,

Y(t) = v' cos(7rt), r even (2.7)
Ysin(7(r + lt, r odd.

Then (SI) is satisfied under the following conditons:

*.. (F1) a. (0) = a. (1);

.1 31

...............!
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(F2) The extension of a. to a function of period 1 on (- ,c) is Lipschitz

of order y > 7 .

The stronger assumption (S2) is satisfied provided (FI) and the following

conditions hold:

(F3) The extension of a. to a function of period 1 on (- , ) has Lipschitz

first derivative;

(F4) d /n 00 .

These facts are consequences of a result in approximation theory known as

Jackson's inequality, see Lemma 4.4.

(2) The Walsh sieve. The following definition of the Walsh functions is due

to Paley (1932), other definitions can be found in Beauchamp (1975). First

define the Rademacher function, (ir r _O) on .0,1) by
r

4 (t) = (- 1 )k if k2 - ( r l ) <- t < (k+l)2 - ( r l )

r
r1 + r2 r V

Then put 0 (t) 1 and for r= 2 + 2 + ... + 2 with r 1 > r, > ... > r 0 let

1 ( = r ( ) r (t) "'".. (t) for t E [0 ,1). .

rt 'r r rrI _V

r is called the rth Walsh function in Paley ordering. Results of Fine (195S,rII

p. 39-1) show that the Walsh sieve, defined by taking ir as the rth Walsh function,ir

satisfies assumption (Si) provided a. is Lipschitz of order Y > 2. Unfortunately,J

in general (S2) is not satisfied for the Walsh sieve unless the rate of increase

of d is prohibitively large. However some examples discussed in Beauchamp

(1975, p. 34) show that the Walsh sieve would be preferable to the Fourier sieve

II
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if the at.'s have a rectangular form. Also the Walsh sieve has an advantage over

the Fourier sieve in terms of computational simplicity.

In order to use the results of this section to obtain confidence intervals

arnd confidence bands for A.i(t) it is first necessary to estimate the function

* G(t) =Em (t). the matrix K(t) given in (2.5) can he estimated by K(t)

(n))) where R(n)(t nZY (
jk Kjk (t) -.. t

Assuming that the covariate processes have paths in D[0,11 and

E s up LY (t)Y k(t)l <'
tE[O, 11

* it follows from Ranga Rao (1963, Theorem 1) that

-(n)a .s.sup I Kjk(t) - K. (t)I 0. (2.8)
tE[0,l 3K. 3k

If M is a standard Wiener process G.(t) can be estimated by

d(n) (t) tj0 (n) (s)) K.. (s)ds,

where L(n) (s) _ (n) ()is a generalized inverse of Y(n)() Thnfo (28
jk

sup Ijn(t) -G.(t) 0. (2.9)

If X is a point process the predictable quadratic variation process <NI> tis

* ft (s)ds which involves al1  . ,a In turn G (t) involves the unknown

0.. *. . . . ***......
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a However, as we have seen, is a consistent estimator of a. in
p J

2_
L -norm, so it is possible to consistently estimate G.(t) in this case as well.J
It follows from Corollary 2.4 that upper and lower limits of a 100(1- a1) percent

confidence interval for A. (t) are given by n(t) 2G n Gn(t)2, where ' isj ( z-2 a/2

the upper a/2 quantile of the standard normal distribution.

If M is a standard Wiener process we can give a confidence band for A..J
) (Gj Gj(t)

First note that m-(t)Gl( (1) +G (t) -  is distributed as W° G.( (t)

m.(t).(l)(G.(l +G.t) i ~G(1) + G.(t)'

where W° is the Brownian bridge on [0,1]. It follows from (2.9) and Corollary

2.7 that upper and lower limits of a 100(1 -ca) percent confidence band for A.

are given by

G. (t)(n)(t +c n (n)( (l~ , (1) 3[,].

J

where c is the upper a quantile of the distribution of suptcO,1]W°(t)I. A

table for this distribution can be found in Hall and Wellner (1980).

1he assumptions (A4) and (BI) can be weakened by assuming that the sequence

of eigenvalues of the matrices Rn, n> I, defined in Lemma 4.3, is bounded away

from 0. However in practice it probably would not be necessary to go to the

trouble of checking this given a lack of any obvious collinearity in the covariates.

i,"

,%
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3. Smoothing the sieve estimators

Ramlau-Hansen (1983) has used the methods of kernel density estimation to

smooth the Nelson-Aalen estimator and obtain a pointwise consistent estimator of

the hazard function. We now apply kernel function smoothing methods to the sieve

estimators. Consider the smoothed sieve estimator 6 n) defined by (1.4) where,
3

for simplicity, we assume that the kernel function Khas support C-l,1]. The

following result shows how the sieve dimension d and the bandwidth parameter
n

b can be specified so that &(n) is a pointwise consistent estimator of a..
n j 3

Theorem 3.1. Suppose that the Fourier sieve is used, conditions (A2), (A3), (A5),

(Bi), (FI) and (F3) hold and K is differentiable with Lipschitz derivative. Let

6 5 1d [n j, where -< 6 <-n 12 2

-1 4

b =n , where 1 < <46.
n 3 5

Then for each t E (0,1)

&(n) (t) - cj.(t) =0 (n-(1 - 6)) (3.1)

3 3 p

If it is assumed that X is a continuous process then we can establish uni-

form consistency for &(n) The rate of convergence in uniform metric is naturally

slower than the pointwise rate given by (3.1).

- '--- . .- ,. .... .-..... '. .' . . .... ... . .- .. ,. : . -... . .... . ... .. . .... . ..
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Theorem 3.2. Suppose that (Al)-(A4), (S2) and (B2) hold, a. and K are Lipschitz,

d -,d =o(n2) b~ n where - <B<- -i, and M is a continuous martingale.

* Then

* 4. Proofs of Theorems.

The following notation was used in McYeague (1986) where a more detailed

* discussion can be found.

Notation

('P ,r r 1) denotes a complete orthonormal sequence in K ([0,14, dii. such

that span'i'., r=1,, d }spanft. r=1,, d}
n jr n

for all n !l.

~(n) denote the coordinates of (,(n an & n) wi h r s e t o t e b a s
Jr jr

LiL
('P. r2!1) in L ([0,11, dii) respectively.

(n) -I f

a ()denotes the pd >'pd matrix partitioned into the p- submatrices
n n

a n (a ()Z r, C1, .. ,d.

(n) n-(n)
c. n Z f P (~ ty () a()-a ()d

jr k=l i=l J0jr ij ik J kt k ()d

nnl
f~ Pjr ij 1j
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n(n) n1n 1:
S(t)Y (t)d (t)j r n - l Z "jr

~(n)

rn jkrZ = fo jr (t)T Ukt(t) EC [Y (t)Y k (t) ]at-.

r (n )  denotes the pd xpd matrix partitioned into the p submatrices

,(n) (n)
jk = (jkrt: r, d n).

c(n), (n, n are p × d matrices defined by their entries given
n

above.

It is easily checked that

vec ((n) (in) -a(n) vec c (4.1)

where a(n)- I is a generalized inverse of a(n) The next two lemmas collect

various facts proved in McKeague (1986).

Lemma 4.1. Suppose that (A1)-(A3), (AS) hold. Then

Mi E Ha (n (n) 2- 0(-) where H denotes operator norm;

d
(ii) E I vec P (n )  2 0(n);

in

2 p I {n} 2 dn
(iii) E vec (c - n ) P 2=0( 41 f t (t)-a. (t)]dt) +o(- •

(in)Lemma 4.2. (i)(A\2)-(A4) imply that n is invertible for all n 1 and

sp (n)-i

n>

:'~~~..-.-..- .....................................-..........--.....--...•.................-. ..-. -......-- :
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(ii) (AI)-(AS) imply that P(a (n ) is invertible)

-1 and { 1 a ( n) - I 11 , n>_1} is a tight sequence of random variables.

Proof of Theorem 2.1. Writing &(n ) and a n ) in terms of the basis (Y r 1)] (jr

we obtain
d

P 1 ( E&n) (n) p dn n) (n)Vn E fl hit at) (t)]Idt= E E h. (4.n 2)(n

j=l t t j=l r=l Jr'jr jr (4.2)

where h. hj(t). (t)dt. By Lemma 4.2 we may define a pxdn matrix
jr 0 j jrn

X (n) - (X(n)) satisfying
jr

vec (A ( n ) ) =(n)-i vac (h (n)) (4-3) L

whreh n) (n) i(n)
=hwhere h(n)= ( Let n denote the pd xpd identity matrix. Then using

jr n x dn

(4.1) we can split (4.2) into four parts

vrivc((n)) ve (n) (4.4)..'

((n)v4i vec (An) vec Pa(44

+,n/ vec (A(n)) vec (c (n) (n) (4.5)

+n vec (X(n) (a(n) (n)- I vec c(n) (4.6)

((n) (n) (n) (n)-1 (n)+ vec ) ( - a )a vec c n  (4.7)

.%

By Lemma 4.2(ii) (4.6) converges to zero in probability. (4.7) is bounded in

absolute value by

-Sm

SS.. * * . .



(n (n ( )-s -2 n

vec XOn) l ) II -aX (n1 1] a 1d II vec c 1 1,d nn

and this tends to zero in probability since

2(h (t) ,. (n)-l (4.8)sup 11 vec n 0 2 o dt] " sup I II< (48)

n_>1 j=l EY (t) n>_1

" by Lemma 4.2(i), {f[ a(n)-l , n 1}_ is tight and dn vec c (n) II - 0 by

Lemma 4.1 (ii), (iii), (SI) and the assumption d =o(n ). Similarly (4.5)
n

converges to zero in probability. It remains to consider (4.4) which we write

in the form
in
- ZZ,.9

Vn i=l n

where

1(n)
Z Z u (t)Y (t)dMj(t) (4.10)n. 0 7 f j (l ij

j=l 1

d
(n) nu n(t)= E X n) (t). (4.11)

r r jr

Introduce

p
Z. f H (t)Y. (t)dM(t) (4.12)

j=1 13 1 2j

where H. is defined by (2.4). In an Appendix (Lemma 4.6) we have used some
.2

operator theory to show that u.(n) H. in L21O,1J as n-. Consequently
3

2
Zni Z i in L2(p, F, P) as n--,:

ni A1

' "' < ' "". '"'. "-"-..-'......"."...".."......-.'.'. "... ,...-"-.'.""-."-"."....''..-'......"...".'"....".. .......... v..."......-.. -. -.-'.," '-'
", "'€ , ., ", :* -..- *.*.*b." * k - . , . " . -- *..- " * ," '" *"- -' ."- . 2' ' ' " 

' '
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p

2 p 
2

E(Z - Z p Z E{f_(J (t) -HM(t))Y (t)dM(t)}
nijl 0 j.!

p 1 (n) 2p E 0 u Ht M-Hj (t)

j=l

0, by (AS). Now apply the Lindeberg-Feller Theorem to (4.9). Note that for

> 0,

n E(E n n>O 2 ,2)

1n 2  I Z > n :E(Z I(Z2  2

n EEZni 1(zni >F n E(Zni I ni>En)
i-l

2
u, since {Z in>} is uniformly integrable, so the Lindeberg condition is

n' -

satisfied. Thus (4.9) converges in distribution to N(O,a'), where

2 2 p p
a =EZ I E a An application of the Cram6r-Wold device completes the0i: I jk".

j=l k=l jk

proof of the theorem. []

Of the corollaries to Theorem 2.1 only Corollary 2.3 needs some explanation.

The following lemma can be used to rework the proof of Theorem 2.1 in terms of

the basis (€r, r>_l) instead of (Tr , r2!1) to yield Corollary 2.3. Note that
jr) jr

we have replaced (A4) by the stronger condition (BI) in order to do this.

Lemma 4.3. Suppose that (A2), (A3), (BI) hold and let R(n ) denote the pd nxpd n(n)

matrix partitioned into the p' submatrices R (k), j k= 1, p with entries

Rjk), fjr(t)kZ(t)E[Y(t)Y(t)]dt. (4.13)

.k 0N

" ... ".:" :"- "-";" i ",°' --° . " ". "..,*, "" ,,- .,.,.,, -'""""" . " - . '''. -' .. . ... ..-°. "*" " i- ". - ,- "" .-,".
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Op

Then R is invertible for all n~tl and sup JIRnl
n 1

Proof. Let c. = inf EY.(t), Y.(t) =c. Y.A for j=l,...,p and let R(n)

be a pd~ xpd matrix partitioned the same way as R but with entries

nn 1

jkrZ j k jkrt

R and

sup 11 R~n i max - 2)u -(n

n :l j=l,. . . p n !l

Condition (BI) implies that

sup I E[Y (t)Yk(t)-,I for jr-k. (4. 14)
tE[O , 1 k

Also note that

inf EY-(t) I for j=1,. . .,p.

te[O,Ij

-, -1 -2Let b. = sup EY' (t), f.(t) I1- EY.(t) and I denote the d xd identity matrix.

Then
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d
1n) 2 n2

I -b.' <I sup E (flh(t) . (t) f (t) dt)
2 r 0 r j

hEL [ E0,11
11h 11 :51

!5 sup fl (~ 2 (dt(by Bessel's inequality)
Ih 5I 1~ 2 t.td

2sup f. (t) <1I.
tELO ,1]

It follows that .. is invertible and

II I =II(b.'R i(n )- H
jj b. jj

b. I- sup .t

tE[o,l]

-2
inf EY.(t)

tE[10,l]

Let F (n) denote the pd nxpd nmatrix obtained by replacing all off diagonal sub-

of~ ~ n( () n

((n)

*pd pd identity matrix. Then F(n is invertible andn n

F max HI 1 41'
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* Using (4.14) and an argument from McKeague (1986, 4.10)

sup G (n) < 1,

* so that

su I(n) - (n )F(n)-l :5 sup( GJ (n) n- < 1.
fl~l n~l

* Ths ~n)F~)-lis invertible for all n-al,

sup II n) < l0 -
n~l

and using (4.15) we conclude that R is invertible for all ni:l and

-. sup (-l <

n~l

*Proof of Theorem 2.5. Condition (B2) implies that (A5) holds, so that the

* conditions of Corollary 2.2 are satisfied and the finite dimensional distributions

ofv~n) An) converge. From the proof of Theorem 3.1 it can be seen that

fnJ ) A \n() t (t) (4.16)
n1 n

where

SUP U Wt -P 0 , (4.17)
tEF0,1]
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(t) in Z(t

Z. ~ ~ (n (t ~~(~) (s)dM, (s)
k=l

(n)
(n) (s,t) (n)

r= 1

he X(n) (t) I ok ( sIPP. C ()d foI ~ ,r~,..

kr (S t)sd for k~j , r=l, .. ,d

n

*It remains to show that the sequence of processes {V n n 11 is tight in CrOl1L

In what follows C denotes a postive constant independent of n whose value may

* change at each occurrence. From Billingsley (1968, Theorem 12.3) the required

tightness is implied by the following condition: there exist constants q 0O,

Y >1I such that for all n l1, ti t E [0,lJ

2

E IV (t )-V (t )q < C It, t1  Y~. (4. 18)
n 2 n 11

The processes , are independent and have zero mean so that by the
n1 nn

* Marcinkiewicz-Zygmund inequality (see Chow and Teicher, 1978, p. 356) for q 21
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(ty 1 E EZ (t ) z (t)J
nt 2 ) n tn i. 2 ni I

~C E Zn1 (t 2  - Z 1 (t 1 ) q

<C Z El fu{~~s~2  (s't )}Y (s)dMs (4.19)
k=1

For fixed t,, t 2 P k, n define the process

IN t((n) (St (n) S )Y(d P tELI
t ouk (t 2) -uk Ist)Y~sd. k 5 O1

which is a square integrable martingale. By the Burkholder-Davis-Gundy inequality

(see Dellacherie and Meyer, 1982, p. 287), for q 1

E( sup IN (q C [ ]/ (4.20)
tELO,1]

Also, by Dellacherie and Meyer (1982, Theorem V 111.30) and the assumption that

MI is a continuous martingale,

LN i f {u(n) (s t') - (~n) (s't 2 Y 2(s)d<M>,(.1

so that combining (4.19), (4.20) and (4.21) with q =4

* (t) -\(ti (4 C E E{t 2  (S
n= nk 1 0' 1.1 k
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p 1 u(n) (n) 2 2C E E{fo[u ((s,t,)- uk n (s,t )] 2 ds} 2

k=l

(by Lemma 4.3 of McKeague (1986) and (B2))

d
p n (n) (n) 2 2

kr E2 kr (t)
k=l r=1 

I

d
p n (

_C z E [X (t )x (kn)t 22
k=l r=1 2 kr 1

-C I1 vec LX(n)(t 2 ) - Xn(t 1 )j fl 4

(n)(n) 4 (by Lemma 4.2(i))

<C H vec [h(n)(t 2 ) -h (tl)] ( m

2

('O~,)jJ) 10, (s)) 2

0 ds (by Bessel's inequalit'EY'(s)
3

<C t,- t "(by- (.A3)

Thus (4.18) is satisfied for q= 4 and y= 2.

The proof of Theorem 3.1 depends on a result from approximation theory

known as Jackson's inequality. The following L-version of this result (see

Cernyh, 1969) is suitable for our purposes.

/
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*Lemma 4.4. Let f: ]R -IR have period 1 and denote the partial sums of the

* d
Fourer sriesof by f d t f r~ (t), d-2:, where is defined by (2.7)

r=l1 r

and fr=13lf(tIPP(t)dt. There exist universal constants C1, C2 such that 5

i) for all d 1

i1  f{d}(t 2dt2
E[f t f ( -) I t sup CIf(t) -f(s) K

It-sl 2<

(ii) if f is differentiable then for all d l

Clf f{d}(t 2 
< 1 2

JLf(t) - ( - 2 su If-(t) -f(s)I

It-s f 2

*Proof of Theorem 3.1. Introduce

n n

and note that

t /b
OL () O (t) F(u)[OL.(t-b u) -L i(t~Jdu.

J I nb J n

* Since a. is Lipschitz, this implies that

-(n)
s up ct. (t) -Cit) 0O(b

O (4-22)
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because > !i(1-a) for B, > 1/3. Define

a* (n) t IW - {n} sd

bn 0 n

-(n)
which we shall use to approximate a. .By (FL), (F3) and Lemma 4.4 (ii), for

6 > 1/4,

fJ1.}(s) -a(s)] ds o(-
0j n

so that, using the Cauchy-Schwarz inequality,

* (n) - (n) t Ir n}
a. (t) CL. (t)I=I f1K(t.~s)LOL. (S) -a.(s)idsI

bn 0 bn

b f(0 -Sds LJ 0 LQ. (s) -a.(s)J ds I
n n 3

n

=o(n ).(4.23)

In view of (4.22) and (4.23) ,to complete the proof of the theorem it suffices

to show that I 'nb I&(n) (t) -a. n (t)) , n -a1} is tight for all t E (0, 1) . Fixn j

*tE (0,1). Using Lemma 4.3 we can rework the proof of Theorem 2.1 replacing the

basis (T'k r 1) by r r ) and h by

7
. . . . . . . . . . . . .
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h~n(5 K( F1-A--) if k=j
k n

* for k=1,. .. , p. Provided we can show that

d

sup E h < CO (4.24)
n~tl r~l j

where h (n) =flh n)(s)pk(s)ds, it follows that

(W7&n) (t ~(n) (t) v h ((S) (&(. (S) - .n s)d
Yn n( j ( j OLi () n 0j j -)

U *'V
n n

in
*where U --2 -- O, V E

nl n An il fi

ni k=l k i

d

Uk r1 kr kr

vec (X (n)) Rnl vec (h (n)),

*and h(n) is the pxd nmatrix with entries h~) The condition d = 0(n2 ) of
nkr n

*Theorem 2.1 is satisfied here since 6 <7 . Next
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2 p (lu(n) 2

EZ 1 < p Z E0u k  (s)Yk(s)dM)
k=l

p 1 (n) 2 2
p EJfus (S)Yk(s)d<M>k=1

p 1 (n)2
<C f0 U (s)ds (by (AS))

k=l

SCi vec k(n) 2

-5C vec h(n) 2, (by Lemma 4.3)

where C is a constant independent of n throughout. Given (4.24), this implies

sup EZ <- and that {V , n21} is tight. It remains to check (4.24). First"' n__ n
n>1

note that the derivative of h (n) satisfies the Lipschitz conditionn I

hn( (n)-(s 2 <2_,C
lh~n) (s1) - hj s2) 2s - 1  s2'' (4.25)

b2
n

for all s1, s2 E[0,1]. Since Khas compact support there exist E>0, n 1l such

(n)
that the support of h. is contained in the interval (e, I-E) for all n;n 1

For n2n Iextend h to a periodic function on the whole real line. This

extension is differentiable and satisfies the Lipschitz condition (4.25) for all

Sl V SE JR .

2U

'. .. .. . - - . . .• ~.. . . . .. , - .,
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Now applying Lemma 4.4 (ii)

d nC 2.*J

0 fl [h (n) (s)]2 ds~ - h(n) 2 < 1 sup I h (n-s I -h n (

0l -s r 2d
n

b dnfn

*since <- 6S. Also

lim J5[h 's)ds =f' F(v)dv

so that d

nr (n h~ 2 f' 1
r=1 Z r h~ 2(v)dv

* and this proves (4.24).

*Proof of Theorem 3.2. Since K is Lipschitz it is of bounded variation. Denote

its total variation by V(K). Then

(in) -(n) 1Pts~nSul (t) -c.() su w 10 ()(A.nsup (t) ,1 inp bn -At-fl A
tE[O,l1l tEE lbn Tnj

V K)I sup -Xn()A (s)I
bin SEEO,1]

in
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since {vn(A (n -A), n>_l} is tight in C[0,1] by Corollary 2.7. Combining (4.26)

with (4.22) completes the proof of the theorem. I

V.

Appendix to the proof of Theorem 2.1.

Let V be a Hilbert space and T a bounded linear operator on V. Suppose

that T is invertible, i.e. T exists and is continuous. We shall need the

following Euler-Knopp series representation for T Let 0 <X <IITI- and

define

kS(k) X ( I- XT'T) iT*, (4.27)

i=0.

where I is the identity operator. Then S(k) converges to T in the uniform

topology. From Groetsch (1977, p. 69) an error bound is given by

S(k) - 1 I II T 1 1  k+l, (4.28)

where 0 < < 1 and

-, -1 -'B = 1- X min {11 TI II T II }. (4.29)

In the following result we shall apply the Euler-Ynopp representation to obtain
an ap roxi atio to -1 ""

an approximation to T in terms of projections of T onto finite dimensional

subspaces. Let {V ,n_ 11 be an increasing sequence of finite dimensional subspaces
n

m-

.4

%~. * . 4* 4~ ; . . . . , ~ .. . - .- . . * .
' - , ,' -'..'-,'& -t-', " _ ' ' "-, " . .. ,'... • ' . .- . . -..-. "- -.". - .. • . . , .-. L..- . .. . . . • .-. . . J. -.,".
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of V such that u V is dense in V. The projection of V onto V is denoted i
n>l

P Define the operator T :V -V by T =P TP*
n nfn n n n n

Lemma 4.5. Suppose that T is invertible for all n->l (T is not assumed to be
n

invertible here). Then the following statements are equivalent.

(i) T is invertible and P*T P n T in the strong operator topology;
n n n

(ii) sup II T I<
nnn>l

Proof. (i) =(ii) by the principle of uniform boundedness. Conversely, suppose

that M sup IT <C. Put I =P*P and note that I converges strongly to
n n n n n n

-1
n-- we obtain 1i TxUl >M lx0 , for all XEV, so that T is invertible. Let

-2 -2
0 < < ii TiI Then we also have 0< X < ii T Il for all n 1, so we may usen

( ) (k) o -  n -

the same A in the Euler- mopp approximations S(k), 5 n of T andT

respectively. It is easily checked from (4.29) that the F's corresponding to

T and T are bounded above by y = 1 - A I . it follows from (4.28) applied to
n

T and T thatn

1i S' k ) 
- T-lii <1 1 k l (4.30)

and

(k) - T-11 Y k+l11 Sn n -
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*for all n~l, k !l. In particular

flP*5 (k P*TP 1 P my ,~ (4.31)
nfn n n n n

for all n-al, k 1I. But, for k fixed, an induction argument shows that PSk
n n n

converges strongly to S (k) as n- -. The triangle inequality, (4.30) and (4.31)

* then show that P*T P converges strongly to T .
n n n

*Lemma 4.6. Suppose that conditions (A2)-(A4) are satisfied. Then the matrix

(n) 2K(t) is invertible a.e. (dt) and u. converges to H. in L [0,1] as n-. Here

K(t), u.(n and H. are defined by (2.5), (4.11) and (2.4) respectively.

p p
Proof. Let V= ~L ([0, 11, dp. and V ~ span (1Y., r=1,., d ). Define

j=l 1 j=1

T: V - V by T (u) (t) = K(t) u(t) , u EV, t E [ 0, 1] The matrix representation of

T =P TP* with respect to the basis QT .O)..,0..,,' ) r=l,...,d}
n n n lr' pr n

is precisely (n) t follows that u (n) h, where u () (n) (n
n n n

*By Lemma 4.2(i), T is invertible for all n !l and sup HT I! < Thus, in
n n n

viwof Lemma 4.5, T is invertible and u (n)_ T-lhi Va

2 2Thus, since the norms in L (AO,11, dw) and L ([0,1j, dt) are equivalent under

(A2) and (U3), K(t) is nonsingular a.e. (dt), T h =H given by (2.4) and

(n) 2
u. -H. in L [01].- 0
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